Description: For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elrefsymrelsrel | |- ( R e. V -> ( R e. ( RefRels i^i SymRels ) <-> ( RefRel R /\ SymRel R ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |- ( R e. ( RefRels i^i SymRels ) <-> ( R e. RefRels /\ R e. SymRels ) ) |
|
2 | elrefrelsrel | |- ( R e. V -> ( R e. RefRels <-> RefRel R ) ) |
|
3 | elsymrelsrel | |- ( R e. V -> ( R e. SymRels <-> SymRel R ) ) |
|
4 | 2 3 | anbi12d | |- ( R e. V -> ( ( R e. RefRels /\ R e. SymRels ) <-> ( RefRel R /\ SymRel R ) ) ) |
5 | 1 4 | syl5bb | |- ( R e. V -> ( R e. ( RefRels i^i SymRels ) <-> ( RefRel R /\ SymRel R ) ) ) |