Metamath Proof Explorer


Theorem elrefsymrelsrel

Description: For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021)

Ref Expression
Assertion elrefsymrelsrel
|- ( R e. V -> ( R e. ( RefRels i^i SymRels ) <-> ( RefRel R /\ SymRel R ) ) )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( R e. ( RefRels i^i SymRels ) <-> ( R e. RefRels /\ R e. SymRels ) )
2 elrefrelsrel
 |-  ( R e. V -> ( R e. RefRels <-> RefRel R ) )
3 elsymrelsrel
 |-  ( R e. V -> ( R e. SymRels <-> SymRel R ) )
4 2 3 anbi12d
 |-  ( R e. V -> ( ( R e. RefRels /\ R e. SymRels ) <-> ( RefRel R /\ SymRel R ) ) )
5 1 4 syl5bb
 |-  ( R e. V -> ( R e. ( RefRels i^i SymRels ) <-> ( RefRel R /\ SymRel R ) ) )