Metamath Proof Explorer


Theorem refsymrels3

Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 ) can use the A. x e. dom r x r x version for their reflexive part, not just the A. x e. dom r A. y e. ran r ( x = y -> x r y ) version of dfrefrels3 , cf. the comment of dfrefrel3 . (Contributed by Peter Mazsa, 22-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion refsymrels3 RefRelsSymRels=rRels|xdomrxrxxyxryyrx

Proof

Step Hyp Ref Expression
1 refsymrels2 RefRelsSymRels=rRels|Idomrrr-1r
2 idrefALT Idomrrxdomrxrx
3 cnvsym r-1rxyxryyrx
4 2 3 anbi12i Idomrrr-1rxdomrxrxxyxryyrx
5 1 4 rabbieq RefRelsSymRels=rRels|xdomrxrxxyxryyrx