Metamath Proof Explorer


Theorem reipcl

Description: An inner product of an element with itself is real. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses reipcl.v V=BaseW
reipcl.h ,˙=𝑖W
Assertion reipcl WCPreHilAVA,˙A

Proof

Step Hyp Ref Expression
1 reipcl.v V=BaseW
2 reipcl.h ,˙=𝑖W
3 eqid normW=normW
4 1 2 3 nmsq WCPreHilAVnormWA2=A,˙A
5 cphngp WCPreHilWNrmGrp
6 1 3 nmcl WNrmGrpAVnormWA
7 5 6 sylan WCPreHilAVnormWA
8 7 resqcld WCPreHilAVnormWA2
9 4 8 eqeltrrd WCPreHilAVA,˙A