Metamath Proof Explorer


Theorem relcnveq

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018)

Ref Expression
Assertion relcnveq Rel R R -1 R R -1 = R

Proof

Step Hyp Ref Expression
1 relcnveq3 Rel R R = R -1 x y x R y y R x
2 cnvsym R -1 R x y x R y y R x
3 1 2 bitr4di Rel R R = R -1 R -1 R
4 eqcom R = R -1 R -1 = R
5 3 4 bitr3di Rel R R -1 R R -1 = R