Metamath Proof Explorer


Theorem reldmlmhm

Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion reldmlmhm ReldomLMHom

Proof

Step Hyp Ref Expression
1 df-lmhm LMHom=sLMod,tLModfsGrpHomt|[˙Scalars/w]˙Scalart=wxBasewyBasesfxsy=xtfy
2 1 reldmmpo ReldomLMHom