Metamath Proof Explorer


Theorem relecxrn

Description: The ( R |X. S ) -coset of a set is a relation. (Contributed by Peter Mazsa, 15-Oct-2020)

Ref Expression
Assertion relecxrn A V Rel A R S

Proof

Step Hyp Ref Expression
1 relopab Rel y z | A R y A S z
2 ecxrn A V A R S = y z | A R y A S z
3 2 releqd A V Rel A R S Rel y z | A R y A S z
4 1 3 mpbiri A V Rel A R S