Description: The ( R |X. S ) -coset of a set is a relation. (Contributed by Peter Mazsa, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relecxrn | ⊢ ( 𝐴 ∈ 𝑉 → Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab | ⊢ Rel { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } | |
| 2 | ecxrn | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ) | |
| 3 | 2 | releqd | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ Rel { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ) ) |
| 4 | 1 3 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ) |