Metamath Proof Explorer


Theorem relecxrn

Description: The ( R |X. S ) -coset of a set is a relation. (Contributed by Peter Mazsa, 15-Oct-2020)

Ref Expression
Assertion relecxrn ( 𝐴𝑉 → Rel [ 𝐴 ] ( 𝑅𝑆 ) )

Proof

Step Hyp Ref Expression
1 relopab Rel { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) }
2 ecxrn ( 𝐴𝑉 → [ 𝐴 ] ( 𝑅𝑆 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) } )
3 2 releqd ( 𝐴𝑉 → ( Rel [ 𝐴 ] ( 𝑅𝑆 ) ↔ Rel { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) } ) )
4 1 3 mpbiri ( 𝐴𝑉 → Rel [ 𝐴 ] ( 𝑅𝑆 ) )