Metamath Proof Explorer


Theorem relecxrn

Description: The ( R |X. S ) -coset of a set is a relation. (Contributed by Peter Mazsa, 15-Oct-2020)

Ref Expression
Assertion relecxrn
|- ( A e. V -> Rel [ A ] ( R |X. S ) )

Proof

Step Hyp Ref Expression
1 relopab
 |-  Rel { <. y , z >. | ( A R y /\ A S z ) }
2 ecxrn
 |-  ( A e. V -> [ A ] ( R |X. S ) = { <. y , z >. | ( A R y /\ A S z ) } )
3 2 releqd
 |-  ( A e. V -> ( Rel [ A ] ( R |X. S ) <-> Rel { <. y , z >. | ( A R y /\ A S z ) } ) )
4 1 3 mpbiri
 |-  ( A e. V -> Rel [ A ] ( R |X. S ) )