Description: The ( R |X. S ) -coset of a set is a relation. (Contributed by Peter Mazsa, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relecxrn | |- ( A e. V -> Rel [ A ] ( R |X. S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab | |- Rel { <. y , z >. | ( A R y /\ A S z ) } |
|
| 2 | ecxrn | |- ( A e. V -> [ A ] ( R |X. S ) = { <. y , z >. | ( A R y /\ A S z ) } ) |
|
| 3 | 2 | releqd | |- ( A e. V -> ( Rel [ A ] ( R |X. S ) <-> Rel { <. y , z >. | ( A R y /\ A S z ) } ) ) |
| 4 | 1 3 | mpbiri | |- ( A e. V -> Rel [ A ] ( R |X. S ) ) |