| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relecxrn |
|- ( A e. V -> Rel [ A ] ( R |X. S ) ) |
| 2 |
|
relxp |
|- Rel ( [ A ] R X. [ A ] S ) |
| 3 |
1 2
|
jctir |
|- ( A e. V -> ( Rel [ A ] ( R |X. S ) /\ Rel ( [ A ] R X. [ A ] S ) ) ) |
| 4 |
|
brxrn |
|- ( ( A e. V /\ x e. _V /\ y e. _V ) -> ( A ( R |X. S ) <. x , y >. <-> ( A R x /\ A S y ) ) ) |
| 5 |
4
|
el3v23 |
|- ( A e. V -> ( A ( R |X. S ) <. x , y >. <-> ( A R x /\ A S y ) ) ) |
| 6 |
|
opex |
|- <. x , y >. e. _V |
| 7 |
|
elecALTV |
|- ( ( A e. V /\ <. x , y >. e. _V ) -> ( <. x , y >. e. [ A ] ( R |X. S ) <-> A ( R |X. S ) <. x , y >. ) ) |
| 8 |
6 7
|
mpan2 |
|- ( A e. V -> ( <. x , y >. e. [ A ] ( R |X. S ) <-> A ( R |X. S ) <. x , y >. ) ) |
| 9 |
|
elecALTV |
|- ( ( A e. V /\ x e. _V ) -> ( x e. [ A ] R <-> A R x ) ) |
| 10 |
9
|
elvd |
|- ( A e. V -> ( x e. [ A ] R <-> A R x ) ) |
| 11 |
|
elecALTV |
|- ( ( A e. V /\ y e. _V ) -> ( y e. [ A ] S <-> A S y ) ) |
| 12 |
11
|
elvd |
|- ( A e. V -> ( y e. [ A ] S <-> A S y ) ) |
| 13 |
10 12
|
anbi12d |
|- ( A e. V -> ( ( x e. [ A ] R /\ y e. [ A ] S ) <-> ( A R x /\ A S y ) ) ) |
| 14 |
5 8 13
|
3bitr4d |
|- ( A e. V -> ( <. x , y >. e. [ A ] ( R |X. S ) <-> ( x e. [ A ] R /\ y e. [ A ] S ) ) ) |
| 15 |
|
opelxp |
|- ( <. x , y >. e. ( [ A ] R X. [ A ] S ) <-> ( x e. [ A ] R /\ y e. [ A ] S ) ) |
| 16 |
14 15
|
bitr4di |
|- ( A e. V -> ( <. x , y >. e. [ A ] ( R |X. S ) <-> <. x , y >. e. ( [ A ] R X. [ A ] S ) ) ) |
| 17 |
16
|
eqrelrdv2 |
|- ( ( ( Rel [ A ] ( R |X. S ) /\ Rel ( [ A ] R X. [ A ] S ) ) /\ A e. V ) -> [ A ] ( R |X. S ) = ( [ A ] R X. [ A ] S ) ) |
| 18 |
3 17
|
mpancom |
|- ( A e. V -> [ A ] ( R |X. S ) = ( [ A ] R X. [ A ] S ) ) |