Metamath Proof Explorer


Theorem ecxrncnvep

Description: The ( R |X.`' _E ) ` -coset of a set. (Contributed by Peter Mazsa, 22-May-2021)

Ref Expression
Assertion ecxrncnvep
|- ( A e. V -> [ A ] ( R |X. `' _E ) = { <. y , z >. | ( z e. A /\ A R y ) } )

Proof

Step Hyp Ref Expression
1 ecxrn
 |-  ( A e. V -> [ A ] ( R |X. `' _E ) = { <. y , z >. | ( A R y /\ A `' _E z ) } )
2 brcnvep
 |-  ( A e. V -> ( A `' _E z <-> z e. A ) )
3 2 anbi1cd
 |-  ( A e. V -> ( ( A R y /\ A `' _E z ) <-> ( z e. A /\ A R y ) ) )
4 3 opabbidv
 |-  ( A e. V -> { <. y , z >. | ( A R y /\ A `' _E z ) } = { <. y , z >. | ( z e. A /\ A R y ) } )
5 1 4 eqtrd
 |-  ( A e. V -> [ A ] ( R |X. `' _E ) = { <. y , z >. | ( z e. A /\ A R y ) } )