Description: The ( R |X.`' _E ) ` -coset of a set. (Contributed by Peter Mazsa, 22-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecxrncnvep | |- ( A e. V -> [ A ] ( R |X. `' _E ) = { <. y , z >. | ( z e. A /\ A R y ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecxrn | |- ( A e. V -> [ A ] ( R |X. `' _E ) = { <. y , z >. | ( A R y /\ A `' _E z ) } ) |
|
| 2 | brcnvep | |- ( A e. V -> ( A `' _E z <-> z e. A ) ) |
|
| 3 | 2 | anbi1cd | |- ( A e. V -> ( ( A R y /\ A `' _E z ) <-> ( z e. A /\ A R y ) ) ) |
| 4 | 3 | opabbidv | |- ( A e. V -> { <. y , z >. | ( A R y /\ A `' _E z ) } = { <. y , z >. | ( z e. A /\ A R y ) } ) |
| 5 | 1 4 | eqtrd | |- ( A e. V -> [ A ] ( R |X. `' _E ) = { <. y , z >. | ( z e. A /\ A R y ) } ) |