Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Range Cartesian product
ecxrncnvep
Next ⟩
ecxrncnvep2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ecxrncnvep
Description:
The
( R |X.
`' _E ) ` -coset of a set.
(Contributed by
Peter Mazsa
, 22-May-2021)
Ref
Expression
Assertion
ecxrncnvep
⊢
A
∈
V
→
A
R
⋉
E
-1
=
y
z
|
z
∈
A
∧
A
R
y
Proof
Step
Hyp
Ref
Expression
1
ecxrn
⊢
A
∈
V
→
A
R
⋉
E
-1
=
y
z
|
A
R
y
∧
A
E
-1
z
2
brcnvep
⊢
A
∈
V
→
A
E
-1
z
↔
z
∈
A
3
2
anbi1cd
⊢
A
∈
V
→
A
R
y
∧
A
E
-1
z
↔
z
∈
A
∧
A
R
y
4
3
opabbidv
⊢
A
∈
V
→
y
z
|
A
R
y
∧
A
E
-1
z
=
y
z
|
z
∈
A
∧
A
R
y
5
1
4
eqtrd
⊢
A
∈
V
→
A
R
⋉
E
-1
=
y
z
|
z
∈
A
∧
A
R
y