Metamath Proof Explorer


Theorem ecxrncnvep

Description: The ( R |X.`' _E ) ` -coset of a set. (Contributed by Peter Mazsa, 22-May-2021)

Ref Expression
Assertion ecxrncnvep A V A R E -1 = y z | z A A R y

Proof

Step Hyp Ref Expression
1 ecxrn A V A R E -1 = y z | A R y A E -1 z
2 brcnvep A V A E -1 z z A
3 2 anbi1cd A V A R y A E -1 z z A A R y
4 3 opabbidv A V y z | A R y A E -1 z = y z | z A A R y
5 1 4 eqtrd A V A R E -1 = y z | z A A R y