Description: The ( R |X.`' _E ) ` -coset of a set. (Contributed by Peter Mazsa, 22-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecxrncnvep | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝐴 𝑅 𝑦 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecxrn | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 ◡ E 𝑧 ) } ) | |
| 2 | brcnvep | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ◡ E 𝑧 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 3 | 2 | anbi1cd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 𝑅 𝑦 ∧ 𝐴 ◡ E 𝑧 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝐴 𝑅 𝑦 ) ) ) |
| 4 | 3 | opabbidv | ⊢ ( 𝐴 ∈ 𝑉 → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 ◡ E 𝑧 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝐴 𝑅 𝑦 ) } ) |
| 5 | 1 4 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝐴 𝑅 𝑦 ) } ) |