Metamath Proof Explorer


Theorem ecxrncnvep

Description: The ( R |X.`' _E ) ` -coset of a set. (Contributed by Peter Mazsa, 22-May-2021)

Ref Expression
Assertion ecxrncnvep ( 𝐴𝑉 → [ 𝐴 ] ( 𝑅 E ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑧𝐴𝐴 𝑅 𝑦 ) } )

Proof

Step Hyp Ref Expression
1 ecxrn ( 𝐴𝑉 → [ 𝐴 ] ( 𝑅 E ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐴 𝑅 𝑦𝐴 E 𝑧 ) } )
2 brcnvep ( 𝐴𝑉 → ( 𝐴 E 𝑧𝑧𝐴 ) )
3 2 anbi1cd ( 𝐴𝑉 → ( ( 𝐴 𝑅 𝑦𝐴 E 𝑧 ) ↔ ( 𝑧𝐴𝐴 𝑅 𝑦 ) ) )
4 3 opabbidv ( 𝐴𝑉 → { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐴 𝑅 𝑦𝐴 E 𝑧 ) } = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑧𝐴𝐴 𝑅 𝑦 ) } )
5 1 4 eqtrd ( 𝐴𝑉 → [ 𝐴 ] ( 𝑅 E ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑧𝐴𝐴 𝑅 𝑦 ) } )