| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relecxrn |
⊢ ( 𝐴 ∈ 𝑉 → Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ) |
| 2 |
|
relxp |
⊢ Rel ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) |
| 3 |
1 2
|
jctir |
⊢ ( 𝐴 ∈ 𝑉 → ( Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∧ Rel ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) ) |
| 4 |
|
brxrn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝑥 , 𝑦 〉 ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) ) |
| 5 |
4
|
el3v23 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝑥 , 𝑦 〉 ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) ) |
| 6 |
|
opex |
⊢ 〈 𝑥 , 𝑦 〉 ∈ V |
| 7 |
|
elecALTV |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 〈 𝑥 , 𝑦 〉 ∈ V ) → ( 〈 𝑥 , 𝑦 〉 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝑥 , 𝑦 〉 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ) |
| 9 |
|
elecALTV |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
| 10 |
9
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
| 11 |
|
elecALTV |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V ) → ( 𝑦 ∈ [ 𝐴 ] 𝑆 ↔ 𝐴 𝑆 𝑦 ) ) |
| 12 |
11
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ [ 𝐴 ] 𝑆 ↔ 𝐴 𝑆 𝑦 ) ) |
| 13 |
10 12
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ [ 𝐴 ] 𝑅 ∧ 𝑦 ∈ [ 𝐴 ] 𝑆 ) ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) ) |
| 14 |
5 8 13
|
3bitr4d |
⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝑥 , 𝑦 〉 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ ( 𝑥 ∈ [ 𝐴 ] 𝑅 ∧ 𝑦 ∈ [ 𝐴 ] 𝑆 ) ) ) |
| 15 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ↔ ( 𝑥 ∈ [ 𝐴 ] 𝑅 ∧ 𝑦 ∈ [ 𝐴 ] 𝑆 ) ) |
| 16 |
14 15
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝑥 , 𝑦 〉 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) ) |
| 17 |
16
|
eqrelrdv2 |
⊢ ( ( ( Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∧ Rel ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) ∧ 𝐴 ∈ 𝑉 ) → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) |
| 18 |
3 17
|
mpancom |
⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) |