Step |
Hyp |
Ref |
Expression |
1 |
|
df-xrn |
⊢ ( 𝑅 ⋉ 𝑆 ) = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) |
2 |
1
|
breqi |
⊢ ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ 𝐴 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) 〈 𝐵 , 𝐶 〉 ) |
3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ 𝐴 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) 〈 𝐵 , 𝐶 〉 ) ) |
4 |
|
brin |
⊢ ( 𝐴 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ∧ 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ) ) |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ∧ 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ) ) ) |
6 |
|
opex |
⊢ 〈 𝐵 , 𝐶 〉 ∈ V |
7 |
|
brcog |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
10 |
|
brcnvg |
⊢ ( ( 𝑥 ∈ V ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ) ) |
11 |
6 10
|
mpan2 |
⊢ ( 𝑥 ∈ V → ( 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ) ) |
12 |
11
|
elv |
⊢ ( 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ) |
13 |
|
brres |
⊢ ( 𝑥 ∈ V → ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 1st 𝑥 ) ) ) |
14 |
13
|
elv |
⊢ ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 1st 𝑥 ) ) |
15 |
|
opelvvg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ) |
16 |
15
|
biantrurd |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 1st 𝑥 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 1st 𝑥 ) ) ) |
17 |
14 16
|
bitr4id |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 〈 𝐵 , 𝐶 〉 1st 𝑥 ) ) |
18 |
|
br1steqg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 1st 𝑥 ↔ 𝑥 = 𝐵 ) ) |
19 |
17 18
|
bitrd |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 𝑥 = 𝐵 ) ) |
20 |
19
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 𝑥 = 𝐵 ) ) |
21 |
12 20
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 𝑥 = 𝐵 ) ) |
22 |
21
|
anbi1cd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ↔ ( 𝑥 = 𝐵 ∧ 𝐴 𝑅 𝑥 ) ) ) |
23 |
22
|
exbidv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 𝑅 𝑥 ) ) ) |
24 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐵 ) ) |
25 |
24
|
ceqsexgv |
⊢ ( 𝐵 ∈ 𝑊 → ( ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 𝑅 𝑥 ) ↔ 𝐴 𝑅 𝐵 ) ) |
26 |
25
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 𝑅 𝑥 ) ↔ 𝐴 𝑅 𝐵 ) ) |
27 |
9 23 26
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ↔ 𝐴 𝑅 𝐵 ) ) |
28 |
|
brcog |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑦 ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
29 |
6 28
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑦 ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑦 ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
31 |
|
brcnvg |
⊢ ( ( 𝑦 ∈ V ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ) ) |
32 |
6 31
|
mpan2 |
⊢ ( 𝑦 ∈ V → ( 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ) ) |
33 |
32
|
elv |
⊢ ( 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ) |
34 |
|
brres |
⊢ ( 𝑦 ∈ V → ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 2nd 𝑦 ) ) ) |
35 |
34
|
elv |
⊢ ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 2nd 𝑦 ) ) |
36 |
15
|
biantrurd |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 2nd 𝑦 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 2nd 𝑦 ) ) ) |
37 |
35 36
|
bitr4id |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 〈 𝐵 , 𝐶 〉 2nd 𝑦 ) ) |
38 |
|
br2ndeqg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 2nd 𝑦 ↔ 𝑦 = 𝐶 ) ) |
39 |
37 38
|
bitrd |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 𝑦 = 𝐶 ) ) |
40 |
39
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 𝑦 = 𝐶 ) ) |
41 |
33 40
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 𝑦 = 𝐶 ) ) |
42 |
41
|
anbi1cd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ↔ ( 𝑦 = 𝐶 ∧ 𝐴 𝑆 𝑦 ) ) ) |
43 |
42
|
exbidv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑦 ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐶 ∧ 𝐴 𝑆 𝑦 ) ) ) |
44 |
|
breq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 𝑆 𝑦 ↔ 𝐴 𝑆 𝐶 ) ) |
45 |
44
|
ceqsexgv |
⊢ ( 𝐶 ∈ 𝑋 → ( ∃ 𝑦 ( 𝑦 = 𝐶 ∧ 𝐴 𝑆 𝑦 ) ↔ 𝐴 𝑆 𝐶 ) ) |
46 |
45
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑦 ( 𝑦 = 𝐶 ∧ 𝐴 𝑆 𝑦 ) ↔ 𝐴 𝑆 𝐶 ) ) |
47 |
30 43 46
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ 𝐴 𝑆 𝐶 ) ) |
48 |
27 47
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ∧ 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐴 𝑆 𝐶 ) ) ) |
49 |
3 5 48
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐴 𝑆 𝐶 ) ) ) |