Step |
Hyp |
Ref |
Expression |
1 |
|
df-xrn |
⊢ ( 𝐴 ⋉ 𝐵 ) = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) |
2 |
|
inss1 |
⊢ ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) ⊆ ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) |
3 |
|
relco |
⊢ Rel ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) |
4 |
|
vex |
⊢ 𝑧 ∈ V |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
4 5
|
brcnv |
⊢ ( 𝑧 ◡ ( 1st ↾ ( V × V ) ) 𝑦 ↔ 𝑦 ( 1st ↾ ( V × V ) ) 𝑧 ) |
7 |
4
|
brresi |
⊢ ( 𝑦 ( 1st ↾ ( V × V ) ) 𝑧 ↔ ( 𝑦 ∈ ( V × V ) ∧ 𝑦 1st 𝑧 ) ) |
8 |
7
|
simplbi |
⊢ ( 𝑦 ( 1st ↾ ( V × V ) ) 𝑧 → 𝑦 ∈ ( V × V ) ) |
9 |
6 8
|
sylbi |
⊢ ( 𝑧 ◡ ( 1st ↾ ( V × V ) ) 𝑦 → 𝑦 ∈ ( V × V ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑥 𝐴 𝑧 ∧ 𝑧 ◡ ( 1st ↾ ( V × V ) ) 𝑦 ) → 𝑦 ∈ ( V × V ) ) |
11 |
10
|
exlimiv |
⊢ ( ∃ 𝑧 ( 𝑥 𝐴 𝑧 ∧ 𝑧 ◡ ( 1st ↾ ( V × V ) ) 𝑦 ) → 𝑦 ∈ ( V × V ) ) |
12 |
|
vex |
⊢ 𝑥 ∈ V |
13 |
12 5
|
opelco |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ↔ ∃ 𝑧 ( 𝑥 𝐴 𝑧 ∧ 𝑧 ◡ ( 1st ↾ ( V × V ) ) 𝑦 ) ) |
14 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( V × ( V × V ) ) ↔ ( 𝑥 ∈ V ∧ 𝑦 ∈ ( V × V ) ) ) |
15 |
12 14
|
mpbiran |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( V × ( V × V ) ) ↔ 𝑦 ∈ ( V × V ) ) |
16 |
11 13 15
|
3imtr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( V × ( V × V ) ) ) |
17 |
3 16
|
relssi |
⊢ ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ⊆ ( V × ( V × V ) ) |
18 |
2 17
|
sstri |
⊢ ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) ⊆ ( V × ( V × V ) ) |
19 |
1 18
|
eqsstri |
⊢ ( 𝐴 ⋉ 𝐵 ) ⊆ ( V × ( V × V ) ) |