Metamath Proof Explorer


Theorem relelrn

Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008)

Ref Expression
Assertion relelrn RelRARBBranR

Proof

Step Hyp Ref Expression
1 brrelex1 RelRARBAV
2 brrelex2 RelRARBBV
3 simpr RelRARBARB
4 brelrng AVBVARBBranR
5 1 2 3 4 syl3anc RelRARBBranR