Metamath Proof Explorer


Theorem relexp1idm

Description: Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020)

Ref Expression
Assertion relexp1idm R V R r 1 r 1 = R r 1

Proof

Step Hyp Ref Expression
1 ifid if 1 < 1 1 1 = 1
2 1 eqcomi 1 = if 1 < 1 1 1
3 2 jctr R V R V 1 = if 1 < 1 1 1
4 1ex 1 V
5 4 prid2 1 0 1
6 5 5 pm3.2i 1 0 1 1 0 1
7 relexp01min R V 1 = if 1 < 1 1 1 1 0 1 1 0 1 R r 1 r 1 = R r 1
8 3 6 7 sylancl R V R r 1 r 1 = R r 1