Metamath Proof Explorer


Theorem relexprn

Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexprn N0RVranRrNR

Proof

Step Hyp Ref Expression
1 relexprng N0RVranRrNdomRranR
2 dmrnssfld domRranRR
3 1 2 sstrdi N0RVranRrNR