Metamath Proof Explorer


Theorem relexprng

Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexprng N0RVranRrNdomRranR

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 relexpnnrn NRVranRrNranR
3 ssun2 ranRdomRranR
4 2 3 sstrdi NRVranRrNdomRranR
5 4 ex NRVranRrNdomRranR
6 simpl N=0RVN=0
7 6 oveq2d N=0RVRrN=Rr0
8 relexp0g RVRr0=IdomRranR
9 8 adantl N=0RVRr0=IdomRranR
10 7 9 eqtrd N=0RVRrN=IdomRranR
11 10 rneqd N=0RVranRrN=ranIdomRranR
12 rnresi ranIdomRranR=domRranR
13 11 12 eqtrdi N=0RVranRrN=domRranR
14 eqimss ranRrN=domRranRranRrNdomRranR
15 13 14 syl N=0RVranRrNdomRranR
16 15 ex N=0RVranRrNdomRranR
17 5 16 jaoi NN=0RVranRrNdomRranR
18 1 17 sylbi N0RVranRrNdomRranR
19 18 imp N0RVranRrNdomRranR