Metamath Proof Explorer


Theorem relresfld

Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012)

Ref Expression
Assertion relresfld RelRRR=R

Proof

Step Hyp Ref Expression
1 relfld RelRR=domRranR
2 1 reseq2d RelRRR=RdomRranR
3 resundi RdomRranR=RdomRRranR
4 eqtr RR=RdomRranRRdomRranR=RdomRRranRRR=RdomRRranR
5 resss RranRR
6 resdm RelRRdomR=R
7 ssequn2 RranRRRRranR=R
8 uneq1 RdomR=RRdomRRranR=RRranR
9 8 eqeq2d RdomR=RRR=RdomRRranRRR=RRranR
10 eqtr RR=RRranRRRranR=RRR=R
11 10 ex RR=RRranRRRranR=RRR=R
12 9 11 syl6bi RdomR=RRR=RdomRRranRRRranR=RRR=R
13 12 com3r RRranR=RRdomR=RRR=RdomRRranRRR=R
14 7 13 sylbi RranRRRdomR=RRR=RdomRRranRRR=R
15 5 6 14 mpsyl RelRRR=RdomRRranRRR=R
16 4 15 syl5com RR=RdomRranRRdomRranR=RdomRRranRRelRRR=R
17 2 3 16 sylancl RelRRelRRR=R
18 17 pm2.43i RelRRR=R