Metamath Proof Explorer


Theorem relssdv

Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004)

Ref Expression
Hypotheses relssdv.1 φRelA
relssdv.2 φxyAxyB
Assertion relssdv φAB

Proof

Step Hyp Ref Expression
1 relssdv.1 φRelA
2 relssdv.2 φxyAxyB
3 2 alrimivv φxyxyAxyB
4 ssrel RelAABxyxyAxyB
5 1 4 syl φABxyxyAxyB
6 3 5 mpbird φAB