Metamath Proof Explorer


Theorem relxpchom

Description: A hom-set in the binary product of categories is a relation. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses relxpchom.t T = C × c D
relxpchom.k K = Hom T
Assertion relxpchom Rel X K Y

Proof

Step Hyp Ref Expression
1 relxpchom.t T = C × c D
2 relxpchom.k K = Hom T
3 xpss 1 st u Hom C 1 st v × 2 nd u Hom D 2 nd v V × V
4 3 rgen2w u Base T v Base T 1 st u Hom C 1 st v × 2 nd u Hom D 2 nd v V × V
5 eqid Base T = Base T
6 eqid Hom C = Hom C
7 eqid Hom D = Hom D
8 1 5 6 7 2 xpchomfval K = u Base T , v Base T 1 st u Hom C 1 st v × 2 nd u Hom D 2 nd v
9 8 ovmptss u Base T v Base T 1 st u Hom C 1 st v × 2 nd u Hom D 2 nd v V × V X K Y V × V
10 4 9 ax-mp X K Y V × V
11 df-rel Rel X K Y X K Y V × V
12 10 11 mpbir Rel X K Y