Step |
Hyp |
Ref |
Expression |
1 |
|
relxpchom.t |
|- T = ( C Xc. D ) |
2 |
|
relxpchom.k |
|- K = ( Hom ` T ) |
3 |
|
xpss |
|- ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) C_ ( _V X. _V ) |
4 |
3
|
rgen2w |
|- A. u e. ( Base ` T ) A. v e. ( Base ` T ) ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) C_ ( _V X. _V ) |
5 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
6 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
7 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
8 |
1 5 6 7 2
|
xpchomfval |
|- K = ( u e. ( Base ` T ) , v e. ( Base ` T ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
9 |
8
|
ovmptss |
|- ( A. u e. ( Base ` T ) A. v e. ( Base ` T ) ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) C_ ( _V X. _V ) -> ( X K Y ) C_ ( _V X. _V ) ) |
10 |
4 9
|
ax-mp |
|- ( X K Y ) C_ ( _V X. _V ) |
11 |
|
df-rel |
|- ( Rel ( X K Y ) <-> ( X K Y ) C_ ( _V X. _V ) ) |
12 |
10 11
|
mpbir |
|- Rel ( X K Y ) |