Metamath Proof Explorer


Theorem renegclALT

Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl . (Contributed by NM, 15-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion renegclALT A A

Proof

Step Hyp Ref Expression
1 negeq x = A x = A
2 1 eleq1d x = A x A
3 vex x V
4 c0ex 0 V
5 3 4 ifex if x x 0 V
6 csbnegg if x x 0 V if x x 0 / x x = if x x 0 / x x
7 5 6 ax-mp if x x 0 / x x = if x x 0 / x x
8 csbvarg 0 V 0 / x x = 0
9 4 8 ax-mp 0 / x x = 0
10 0re 0
11 9 10 eqeltri 0 / x x
12 sbcel1g 0 V [˙ 0 / x]˙ x 0 / x x
13 4 12 ax-mp [˙ 0 / x]˙ x 0 / x x
14 11 13 mpbir [˙ 0 / x]˙ x
15 14 elimhyps [˙ if x x 0 / x]˙ x
16 sbcel1g if x x 0 V [˙ if x x 0 / x]˙ x if x x 0 / x x
17 5 16 ax-mp [˙ if x x 0 / x]˙ x if x x 0 / x x
18 15 17 mpbi if x x 0 / x x
19 18 renegcli if x x 0 / x x
20 7 19 eqeltri if x x 0 / x x
21 sbcel1g if x x 0 V [˙ if x x 0 / x]˙ x if x x 0 / x x
22 5 21 ax-mp [˙ if x x 0 / x]˙ x if x x 0 / x x
23 20 22 mpbir [˙ if x x 0 / x]˙ x
24 23 dedths x x
25 2 24 vtoclga A A