Metamath Proof Explorer


Theorem renegclALT

Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl . (Contributed by NM, 15-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion renegclALT AA

Proof

Step Hyp Ref Expression
1 negeq x=Ax=A
2 1 eleq1d x=AxA
3 vex xV
4 c0ex 0V
5 3 4 ifex ifxx0V
6 csbnegg ifxx0Vifxx0/xx=ifxx0/xx
7 5 6 ax-mp ifxx0/xx=ifxx0/xx
8 csbvarg 0V0/xx=0
9 4 8 ax-mp 0/xx=0
10 0re 0
11 9 10 eqeltri 0/xx
12 sbcel1g 0V[˙0/x]˙x0/xx
13 4 12 ax-mp [˙0/x]˙x0/xx
14 11 13 mpbir [˙0/x]˙x
15 14 elimhyps [˙ifxx0/x]˙x
16 sbcel1g ifxx0V[˙ifxx0/x]˙xifxx0/xx
17 5 16 ax-mp [˙ifxx0/x]˙xifxx0/xx
18 15 17 mpbi ifxx0/xx
19 18 renegcli ifxx0/xx
20 7 19 eqeltri ifxx0/xx
21 sbcel1g ifxx0V[˙ifxx0/x]˙xifxx0/xx
22 5 21 ax-mp [˙ifxx0/x]˙xifxx0/xx
23 20 22 mpbir [˙ifxx0/x]˙x
24 23 dedths xx
25 2 24 vtoclga AA