Metamath Proof Explorer


Theorem renpncan3

Description: Cancellation law for real subtraction. Compare npncan3 . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Assertion renpncan3 A B C A - B + C - A = C - B

Proof

Step Hyp Ref Expression
1 simp1 A B C A
2 rersubcl C A C - A
3 2 ancoms A C C - A
4 3 3adant2 A B C C - A
5 simp2 A B C B
6 readdsub A C - A B A + C - A - B = A - B + C - A
7 1 4 5 6 syl3anc A B C A + C - A - B = A - B + C - A
8 repncan3 A C A + C - A = C
9 8 3adant2 A B C A + C - A = C
10 9 oveq1d A B C A + C - A - B = C - B
11 7 10 eqtr3d A B C A - B + C - A = C - B