Metamath Proof Explorer


Theorem renpncan3

Description: Cancellation law for real subtraction. Compare npncan3 . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Assertion renpncan3 ABCA-B+C-A=C-B

Proof

Step Hyp Ref Expression
1 simp1 ABCA
2 rersubcl CAC-A
3 2 ancoms ACC-A
4 3 3adant2 ABCC-A
5 simp2 ABCB
6 readdsub AC-ABA+C-A-B=A-B+C-A
7 1 4 5 6 syl3anc ABCA+C-A-B=A-B+C-A
8 repncan3 ACA+C-A=C
9 8 3adant2 ABCA+C-A=C
10 9 oveq1d ABCA+C-A-B=C-B
11 7 10 eqtr3d ABCA-B+C-A=C-B