Metamath Proof Explorer


Theorem renpncan3

Description: Cancellation law for real subtraction. Compare npncan3 . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Assertion renpncan3
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) + ( C -R A ) ) = ( C -R B ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR )
2 rersubcl
 |-  ( ( C e. RR /\ A e. RR ) -> ( C -R A ) e. RR )
3 2 ancoms
 |-  ( ( A e. RR /\ C e. RR ) -> ( C -R A ) e. RR )
4 3 3adant2
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C -R A ) e. RR )
5 simp2
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR )
6 readdsub
 |-  ( ( A e. RR /\ ( C -R A ) e. RR /\ B e. RR ) -> ( ( A + ( C -R A ) ) -R B ) = ( ( A -R B ) + ( C -R A ) ) )
7 1 4 5 6 syl3anc
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + ( C -R A ) ) -R B ) = ( ( A -R B ) + ( C -R A ) ) )
8 repncan3
 |-  ( ( A e. RR /\ C e. RR ) -> ( A + ( C -R A ) ) = C )
9 8 3adant2
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + ( C -R A ) ) = C )
10 9 oveq1d
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + ( C -R A ) ) -R B ) = ( C -R B ) )
11 7 10 eqtr3d
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) + ( C -R A ) ) = ( C -R B ) )