Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
2 |
|
rersubcl |
|- ( ( C e. RR /\ A e. RR ) -> ( C -R A ) e. RR ) |
3 |
2
|
ancoms |
|- ( ( A e. RR /\ C e. RR ) -> ( C -R A ) e. RR ) |
4 |
3
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C -R A ) e. RR ) |
5 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
6 |
|
readdsub |
|- ( ( A e. RR /\ ( C -R A ) e. RR /\ B e. RR ) -> ( ( A + ( C -R A ) ) -R B ) = ( ( A -R B ) + ( C -R A ) ) ) |
7 |
1 4 5 6
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + ( C -R A ) ) -R B ) = ( ( A -R B ) + ( C -R A ) ) ) |
8 |
|
repncan3 |
|- ( ( A e. RR /\ C e. RR ) -> ( A + ( C -R A ) ) = C ) |
9 |
8
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + ( C -R A ) ) = C ) |
10 |
9
|
oveq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + ( C -R A ) ) -R B ) = ( C -R B ) ) |
11 |
7 10
|
eqtr3d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) + ( C -R A ) ) = ( C -R B ) ) |