Metamath Proof Explorer


Theorem repsw2

Description: The "repeated symbol word" of length two. (Contributed by AV, 6-Nov-2018)

Ref Expression
Assertion repsw2 SVSrepeatS2=⟨“SS”⟩

Proof

Step Hyp Ref Expression
1 df-s2 ⟨“SS”⟩=⟨“S”⟩++⟨“S”⟩
2 1nn0 10
3 repswccat SV1010SrepeatS1++SrepeatS1=SrepeatS1+1
4 2 2 3 mp3an23 SVSrepeatS1++SrepeatS1=SrepeatS1+1
5 repsw1 SVSrepeatS1=⟨“S”⟩
6 5 5 oveq12d SVSrepeatS1++SrepeatS1=⟨“S”⟩++⟨“S”⟩
7 1p1e2 1+1=2
8 7 a1i SV1+1=2
9 8 oveq2d SVSrepeatS1+1=SrepeatS2
10 4 6 9 3eqtr3d SV⟨“S”⟩++⟨“S”⟩=SrepeatS2
11 1 10 eqtr2id SVSrepeatS2=⟨“SS”⟩