| Step |
Hyp |
Ref |
Expression |
| 1 |
|
repswlen |
|
| 2 |
1
|
3adant3 |
|
| 3 |
|
repswlen |
|
| 4 |
3
|
3adant2 |
|
| 5 |
2 4
|
oveq12d |
|
| 6 |
5
|
oveq2d |
|
| 7 |
|
simp1 |
|
| 8 |
7
|
adantr |
|
| 9 |
|
simpl2 |
|
| 10 |
2
|
oveq2d |
|
| 11 |
10
|
eleq2d |
|
| 12 |
11
|
biimpa |
|
| 13 |
8 9 12
|
3jca |
|
| 14 |
13
|
adantlr |
|
| 15 |
|
repswsymb |
|
| 16 |
14 15
|
syl |
|
| 17 |
7
|
ad2antrr |
|
| 18 |
|
simpll3 |
|
| 19 |
2 4
|
jca |
|
| 20 |
|
simpr |
|
| 21 |
20
|
anim1i |
|
| 22 |
|
nn0z |
|
| 23 |
|
nn0z |
|
| 24 |
22 23
|
anim12i |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
fzocatel |
|
| 27 |
21 25 26
|
syl2anc |
|
| 28 |
27
|
exp31 |
|
| 29 |
28
|
3adant1 |
|
| 30 |
|
oveq12 |
|
| 31 |
30
|
oveq2d |
|
| 32 |
31
|
eleq2d |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
eleq2d |
|
| 35 |
34
|
notbid |
|
| 36 |
35
|
adantr |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
eleq1d |
|
| 39 |
38
|
adantr |
|
| 40 |
36 39
|
imbi12d |
|
| 41 |
32 40
|
imbi12d |
|
| 42 |
29 41
|
imbitrrid |
|
| 43 |
19 42
|
mpcom |
|
| 44 |
43
|
imp31 |
|
| 45 |
|
repswsymb |
|
| 46 |
17 18 44 45
|
syl3anc |
|
| 47 |
16 46
|
ifeqda |
|
| 48 |
6 47
|
mpteq12dva |
|
| 49 |
|
ovex |
|
| 50 |
|
ovex |
|
| 51 |
49 50
|
pm3.2i |
|
| 52 |
|
ccatfval |
|
| 53 |
51 52
|
mp1i |
|
| 54 |
|
nn0addcl |
|
| 55 |
54
|
3adant1 |
|
| 56 |
|
reps |
|
| 57 |
7 55 56
|
syl2anc |
|
| 58 |
48 53 57
|
3eqtr4d |
|