Metamath Proof Explorer


Theorem rereccld

Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses redivcld.1 φA
rereccld.2 φA0
Assertion rereccld φ1A

Proof

Step Hyp Ref Expression
1 redivcld.1 φA
2 rereccld.2 φA0
3 rereccl AA01A
4 1 2 3 syl2anc φ1A