Metamath Proof Explorer


Theorem rescom

Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998)

Ref Expression
Assertion rescom ABC=ACB

Proof

Step Hyp Ref Expression
1 incom BC=CB
2 1 reseq2i ABC=ACB
3 resres ABC=ABC
4 resres ACB=ACB
5 2 3 4 3eqtr4i ABC=ACB