Metamath Proof Explorer


Theorem resdifdir

Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024)

Ref Expression
Assertion resdifdir ABC=ACBC

Proof

Step Hyp Ref Expression
1 indifdir ABC×V=AC×VBC×V
2 df-res ABC=ABC×V
3 df-res AC=AC×V
4 df-res BC=BC×V
5 3 4 difeq12i ACBC=AC×VBC×V
6 1 2 5 3eqtr4i ABC=ACBC