Metamath Proof Explorer


Theorem reseccl

Description: The closure of the secant function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion reseccl AcosA0secA

Proof

Step Hyp Ref Expression
1 recn AA
2 secval AcosA0secA=1cosA
3 1 2 sylan AcosA0secA=1cosA
4 recoscl AcosA
5 1red A1
6 redivcl 1cosAcosA01cosA
7 5 6 syl3an1 AcosAcosA01cosA
8 4 7 syl3an2 AAcosA01cosA
9 8 3anidm12 AcosA01cosA
10 3 9 eqeltrd AcosA0secA