Metamath Proof Explorer


Theorem resfvresima

Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses resfvresima.f φFunF
resfvresima.s φSdomF
resfvresima.x φXS
Assertion resfvresima φHFSFSX=HFX

Proof

Step Hyp Ref Expression
1 resfvresima.f φFunF
2 resfvresima.s φSdomF
3 resfvresima.x φXS
4 3 fvresd φFSX=FX
5 4 fveq2d φHFSFSX=HFSFX
6 1 2 jca φFunFSdomF
7 funfvima2 FunFSdomFXSFXFS
8 6 3 7 sylc φFXFS
9 8 fvresd φHFSFX=HFX
10 5 9 eqtrd φHFSFSX=HFX