Metamath Proof Explorer


Theorem resiima

Description: The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006)

Ref Expression
Assertion resiima BAIAB=B

Proof

Step Hyp Ref Expression
1 df-ima IAB=ranIAB
2 1 a1i BAIAB=ranIAB
3 resabs1 BAIAB=IB
4 3 rneqd BAranIAB=ranIB
5 rnresi ranIB=B
6 5 a1i BAranIB=B
7 2 4 6 3eqtrd BAIAB=B