Metamath Proof Explorer


Theorem resima2

Description: Image under a restricted class. (Contributed by FL, 31-Aug-2009) (Proof shortened by JJ, 25-Aug-2021)

Ref Expression
Assertion resima2 BCACB=AB

Proof

Step Hyp Ref Expression
1 sseqin2 BCCB=B
2 reseq2 CB=BACB=AB
3 1 2 sylbi BCACB=AB
4 3 rneqd BCranACB=ranAB
5 df-ima ACB=ranACB
6 resres ACB=ACB
7 6 rneqi ranACB=ranACB
8 5 7 eqtri ACB=ranACB
9 df-ima AB=ranAB
10 4 8 9 3eqtr4g BCACB=AB