Metamath Proof Explorer


Theorem ressbas2

Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses ressbas.r R=W𝑠A
ressbas.b B=BaseW
Assertion ressbas2 ABA=BaseR

Proof

Step Hyp Ref Expression
1 ressbas.r R=W𝑠A
2 ressbas.b B=BaseW
3 df-ss ABAB=A
4 3 biimpi ABAB=A
5 2 fvexi BV
6 5 ssex ABAV
7 1 2 ressbas AVAB=BaseR
8 6 7 syl ABAB=BaseR
9 4 8 eqtr3d ABA=BaseR