Metamath Proof Explorer


Theorem restt0

Description: A subspace of a T_0 topology is T_0. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion restt0 JKol2AVJ𝑡AKol2

Proof

Step Hyp Ref Expression
1 t0top JKol2JTop
2 cnt0 JKol2IAJ:AJ1-1AJIAJJ𝑡ACnJJ𝑡AKol2
3 1 2 resthauslem JKol2AVJ𝑡AKol2