Metamath Proof Explorer


Theorem restuni5

Description: The underlying set of a subspace induced by the ` |``t ` operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis restuni5.1 X=J
Assertion restuni5 JVAXA=J𝑡A

Proof

Step Hyp Ref Expression
1 restuni5.1 X=J
2 simpl JVAXJV
3 id AXAX
4 3 1 sseqtrdi AXAJ
5 4 adantl JVAXAJ
6 2 5 restuni4 JVAXJ𝑡A=A
7 6 eqcomd JVAXA=J𝑡A