Metamath Proof Explorer


Theorem retopsconn

Description: The real numbers are simply connected. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion retopsconn topGen ran . SConn

Proof

Step Hyp Ref Expression
1 retop topGen ran . Top
2 ioomax −∞ +∞ =
3 uniretop = topGen ran .
4 2 3 eqtri −∞ +∞ = topGen ran .
5 4 restid topGen ran . Top topGen ran . 𝑡 −∞ +∞ = topGen ran .
6 1 5 ax-mp topGen ran . 𝑡 −∞ +∞ = topGen ran .
7 ioosconn topGen ran . 𝑡 −∞ +∞ SConn
8 6 7 eqeltrri topGen ran . SConn