Metamath Proof Explorer


Theorem reu3

Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006)

Ref Expression
Assertion reu3 ∃!xAφxAφyAxAφx=y

Proof

Step Hyp Ref Expression
1 reurex ∃!xAφxAφ
2 reu6 ∃!xAφyAxAφx=y
3 biimp φx=yφx=y
4 3 ralimi xAφx=yxAφx=y
5 4 reximi yAxAφx=yyAxAφx=y
6 2 5 sylbi ∃!xAφyAxAφx=y
7 1 6 jca ∃!xAφxAφyAxAφx=y
8 rexex yAxAφx=yyxAφx=y
9 8 anim2i xAφyAxAφx=yxAφyxAφx=y
10 eu3v ∃!xxAφxxAφyxxAφx=y
11 df-reu ∃!xAφ∃!xxAφ
12 df-rex xAφxxAφ
13 df-ral xAφx=yxxAφx=y
14 impexp xAφx=yxAφx=y
15 14 albii xxAφx=yxxAφx=y
16 13 15 bitr4i xAφx=yxxAφx=y
17 16 exbii yxAφx=yyxxAφx=y
18 12 17 anbi12i xAφyxAφx=yxxAφyxxAφx=y
19 10 11 18 3bitr4i ∃!xAφxAφyxAφx=y
20 9 19 sylibr xAφyAxAφx=y∃!xAφ
21 7 20 impbii ∃!xAφxAφyAxAφx=y