Metamath Proof Explorer


Theorem reueqi

Description: Equality inference for restricted existential uniqueness quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis reueqi.1 A = B
Assertion reueqi ∃! x A ψ ∃! x B ψ

Proof

Step Hyp Ref Expression
1 reueqi.1 A = B
2 1 eleq2i x A x B
3 2 anbi1i x A ψ x B ψ
4 3 eubii ∃! x x A ψ ∃! x x B ψ
5 df-reu ∃! x A ψ ∃! x x A ψ
6 df-reu ∃! x B ψ ∃! x x B ψ
7 4 5 6 3bitr4i ∃! x A ψ ∃! x B ψ