Metamath Proof Explorer


Theorem reurexprg

Description: Convert a restricted existential uniqueness over a pair to a restricted existential quantification and an implication . (Contributed by AV, 3-Apr-2023)

Ref Expression
Hypotheses reuprg.1 x=Aφψ
reuprg.2 x=Bφχ
Assertion reurexprg AVBW∃!xABφxABφχψA=B

Proof

Step Hyp Ref Expression
1 reuprg.1 x=Aφψ
2 reuprg.2 x=Bφχ
3 1 2 reuprg AVBW∃!xABφψχχψA=B
4 1 2 rexprg AVBWxABφψχ
5 4 bicomd AVBWψχxABφ
6 5 anbi1d AVBWψχχψA=BxABφχψA=B
7 3 6 bitrd AVBW∃!xABφxABφχψA=B