Metamath Proof Explorer


Theorem rexabsle

Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rexabsle.1 xφ
rexabsle.2 φxAB
Assertion rexabsle φyxABywxABwzxAzB

Proof

Step Hyp Ref Expression
1 rexabsle.1 xφ
2 rexabsle.2 φxAB
3 nfv xy=a
4 breq2 y=aByBa
5 3 4 ralbid y=axAByxABa
6 5 cbvrexvw yxAByaxABa
7 6 a1i φyxAByaxABa
8 1 2 rexabslelem φaxABabxABbcxAcB
9 breq2 b=wBbBw
10 9 ralbidv b=wxABbxABw
11 10 cbvrexvw bxABbwxABw
12 breq1 c=zcBzB
13 12 ralbidv c=zxAcBxAzB
14 13 cbvrexvw cxAcBzxAzB
15 11 14 anbi12i bxABbcxAcBwxABwzxAzB
16 15 a1i φbxABbcxAcBwxABwzxAzB
17 7 8 16 3bitrd φyxABywxABwzxAzB