Metamath Proof Explorer


Theorem allbutfiinf

Description: Given a "for all but finitely many" condition, the condition holds from N on. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses allbutfiinf.z Z=M
allbutfiinf.a A=nZmnB
allbutfiinf.x φXA
allbutfiinf.n N=supnZ|mnXB<
Assertion allbutfiinf φNZmNXB

Proof

Step Hyp Ref Expression
1 allbutfiinf.z Z=M
2 allbutfiinf.a A=nZmnB
3 allbutfiinf.x φXA
4 allbutfiinf.n N=supnZ|mnXB<
5 ssrab2 nZ|mnXBZ
6 4 a1i φN=supnZ|mnXB<
7 5 1 sseqtri nZ|mnXBM
8 7 a1i φnZ|mnXBM
9 1 2 allbutfi XAnZmnXB
10 3 9 sylib φnZmnXB
11 nfrab1 _nnZ|mnXB
12 nfcv _n
13 11 12 nfne nnZ|mnXB
14 rabid nnZ|mnXBnZmnXB
15 14 bicomi nZmnXBnnZ|mnXB
16 15 biimpi nZmnXBnnZ|mnXB
17 16 ne0d nZmnXBnZ|mnXB
18 17 ex nZmnXBnZ|mnXB
19 13 18 rexlimi nZmnXBnZ|mnXB
20 19 a1i φnZmnXBnZ|mnXB
21 10 20 mpd φnZ|mnXB
22 infssuzcl nZ|mnXBMnZ|mnXBsupnZ|mnXB<nZ|mnXB
23 8 21 22 syl2anc φsupnZ|mnXB<nZ|mnXB
24 6 23 eqeltrd φNnZ|mnXB
25 5 24 sselid φNZ
26 nfcv _n
27 nfcv _n<
28 11 26 27 nfinf _nsupnZ|mnXB<
29 4 28 nfcxfr _nN
30 nfcv _nZ
31 nfcv _n
32 31 29 nffv _nN
33 nfv nXB
34 32 33 nfralw nmNXB
35 nfcv _mn
36 nfcv _m
37 nfra1 mmnXB
38 nfcv _mZ
39 37 38 nfrabw _mnZ|mnXB
40 nfcv _m
41 nfcv _m<
42 39 40 41 nfinf _msupnZ|mnXB<
43 4 42 nfcxfr _mN
44 36 43 nffv _mN
45 fveq2 n=Nn=N
46 35 44 45 raleqd n=NmnXBmNXB
47 29 30 34 46 elrabf NnZ|mnXBNZmNXB
48 47 biimpi NnZ|mnXBNZmNXB
49 48 simprd NnZ|mnXBmNXB
50 24 49 syl φmNXB
51 25 50 jca φNZmNXB