| Step |
Hyp |
Ref |
Expression |
| 1 |
|
allbutfiinf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
allbutfiinf.a |
⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐵 |
| 3 |
|
allbutfiinf.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 4 |
|
allbutfiinf.n |
⊢ 𝑁 = inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) |
| 5 |
|
ssrab2 |
⊢ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ⊆ 𝑍 |
| 6 |
4
|
a1i |
⊢ ( 𝜑 → 𝑁 = inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) ) |
| 7 |
5 1
|
sseqtri |
⊢ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ⊆ ( ℤ≥ ‘ 𝑀 ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 |
1 2
|
allbutfi |
⊢ ( 𝑋 ∈ 𝐴 ↔ ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) |
| 10 |
3 9
|
sylib |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) |
| 11 |
|
nfrab1 |
⊢ Ⅎ 𝑛 { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑛 ∅ |
| 13 |
11 12
|
nfne |
⊢ Ⅎ 𝑛 { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ |
| 14 |
|
rabid |
⊢ ( 𝑛 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ↔ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ) |
| 15 |
14
|
bicomi |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) ↔ 𝑛 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
| 16 |
15
|
biimpi |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) → 𝑛 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
| 17 |
16
|
ne0d |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ) → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) |
| 18 |
17
|
ex |
⊢ ( 𝑛 ∈ 𝑍 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) ) |
| 19 |
13 18
|
rexlimi |
⊢ ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) ) |
| 21 |
10 20
|
mpd |
⊢ ( 𝜑 → { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) |
| 22 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ≠ ∅ ) → inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
| 23 |
8 21 22
|
syl2anc |
⊢ ( 𝜑 → inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
| 24 |
6 23
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ) |
| 25 |
5 24
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
| 28 |
11 26 27
|
nfinf |
⊢ Ⅎ 𝑛 inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) |
| 29 |
4 28
|
nfcxfr |
⊢ Ⅎ 𝑛 𝑁 |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑍 |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑛 ℤ≥ |
| 32 |
31 29
|
nffv |
⊢ Ⅎ 𝑛 ( ℤ≥ ‘ 𝑁 ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑛 𝑋 ∈ 𝐵 |
| 34 |
32 33
|
nfralw |
⊢ Ⅎ 𝑛 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑛 ) |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑚 ℤ≥ |
| 37 |
|
nfra1 |
⊢ Ⅎ 𝑚 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 |
| 38 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑍 |
| 39 |
37 38
|
nfrabw |
⊢ Ⅎ 𝑚 { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } |
| 40 |
|
nfcv |
⊢ Ⅎ 𝑚 ℝ |
| 41 |
|
nfcv |
⊢ Ⅎ 𝑚 < |
| 42 |
39 40 41
|
nfinf |
⊢ Ⅎ 𝑚 inf ( { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } , ℝ , < ) |
| 43 |
4 42
|
nfcxfr |
⊢ Ⅎ 𝑚 𝑁 |
| 44 |
36 43
|
nffv |
⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑁 ) |
| 45 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 46 |
35 44 45
|
raleqd |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) ) |
| 47 |
29 30 34 46
|
elrabf |
⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } ↔ ( 𝑁 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) ) |
| 48 |
47
|
biimpi |
⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } → ( 𝑁 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) ) |
| 49 |
48
|
simprd |
⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑍 ∣ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑋 ∈ 𝐵 } → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) |
| 50 |
24 49
|
syl |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) |
| 51 |
25 50
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) 𝑋 ∈ 𝐵 ) ) |