Metamath Proof Explorer


Theorem rexdifpr

Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018)

Ref Expression
Assertion rexdifpr xABCφxAxBxCφ

Proof

Step Hyp Ref Expression
1 eldifpr xABCxAxBxC
2 3anass xAxBxCxAxBxC
3 1 2 bitri xABCxAxBxC
4 3 anbi1i xABCφxAxBxCφ
5 anass xAxBxCφxAxBxCφ
6 df-3an xBxCφxBxCφ
7 6 bicomi xBxCφxBxCφ
8 7 anbi2i xAxBxCφxAxBxCφ
9 5 8 bitri xAxBxCφxAxBxCφ
10 4 9 bitri xABCφxAxBxCφ
11 10 rexbii2 xABCφxAxBxCφ