Metamath Proof Explorer


Theorem rexeqif

Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rexeqif.1 _xA
rexeqif.2 _xB
rexeqif.3 A=B
Assertion rexeqif xAφxBφ

Proof

Step Hyp Ref Expression
1 rexeqif.1 _xA
2 rexeqif.2 _xB
3 rexeqif.3 A=B
4 1 2 rexeqf A=BxAφxBφ
5 3 4 ax-mp xAφxBφ