Metamath Proof Explorer


Theorem rexlimd2

Description: Version of rexlimd with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013) (Revised by Mario Carneiro, 8-Oct-2016)

Ref Expression
Hypotheses rexlimd2.1 xφ
rexlimd2.2 φxχ
rexlimd2.3 φxAψχ
Assertion rexlimd2 φxAψχ

Proof

Step Hyp Ref Expression
1 rexlimd2.1 xφ
2 rexlimd2.2 φxχ
3 rexlimd2.3 φxAψχ
4 1 3 ralrimi φxAψχ
5 r19.23t xχxAψχxAψχ
6 2 5 syl φxAψχxAψχ
7 4 6 mpbid φxAψχ