Metamath Proof Explorer


Theorem rexlimddv2

Description: Restricted existential elimination rule of natural deduction. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses rexlimddv2.1 φxAψ
rexlimddv2.2 φxAψχ
Assertion rexlimddv2 φχ

Proof

Step Hyp Ref Expression
1 rexlimddv2.1 φxAψ
2 rexlimddv2.2 φxAψχ
3 2 anasss φxAψχ
4 1 3 rexlimddv φχ