Metamath Proof Explorer


Theorem rexlimddv2

Description: Restricted existential elimination rule of natural deduction. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses rexlimddv2.1 φ x A ψ
rexlimddv2.2 φ x A ψ χ
Assertion rexlimddv2 φ χ

Proof

Step Hyp Ref Expression
1 rexlimddv2.1 φ x A ψ
2 rexlimddv2.2 φ x A ψ χ
3 2 anasss φ x A ψ χ
4 1 3 rexlimddv φ χ