Metamath Proof Explorer
Description: Restricted existential elimination rule of natural deduction.
(Contributed by Glauco Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
rexlimddv2.1 |
|
|
|
rexlimddv2.2 |
|
|
Assertion |
rexlimddv2 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexlimddv2.1 |
|
2 |
|
rexlimddv2.2 |
|
3 |
2
|
anasss |
|
4 |
1 3
|
rexlimddv |
|