Metamath Proof Explorer


Theorem rexlimdv3d

Description: An extended version of rexlimdvv to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024)

Ref Expression
Hypothesis rexlimdv3d.1 φxAyBzCψχ
Assertion rexlimdv3d φxAyBzCψχ

Proof

Step Hyp Ref Expression
1 rexlimdv3d.1 φxAyBzCψχ
2 1 3expd φxAyBzCψχ
3 2 imp4d φxAyBzCψχ
4 3 expdimp φxAyBzCψχ
5 4 rexlimdvv φxAyBzCψχ
6 5 rexlimdva φxAyBzCψχ